Beyond Design: Stackup Planning, Part 3


Reading time ( words)

Following on from the first Stackup Planning columns, this month’s Part 3 will look at higher layer-count stackups. The four- and six-layer configurations are not the best choice for high-speed design. In particular, each signal layer should be adjacent to, and closely coupled to, an uninterrupted reference plane, which creates a clear return path and eliminates broadside crosstalk. As the layer count increases, these rules become easier to implement but decisions regarding return current paths become more challenging.

Given the luxury of more layers:

  • Electromagnetic compliancy (EMC) can be improved or more routing layers can be added.
  • Power and ground planes can be closely coupled to add planar capacitance, which is essential for GHz plus design.
  • The power distribution networks (PDNs) can be improved by substituting embedded capacitance material (ECM) for the planes.
  • Multiple power planes/pours can be defined to accommodate the high number of supplies required by today’s processors and FPGAs.
  • Multiple ground planes can be inserted to reduce the plane impedance and loop area.

Although power planes can be used as reference planes, ground is more effective because local stitching vias can be used for the return current transitions, rather than stitching decoupling capacitors which add inductance. This keeps the loop area small and reduces radiation. As the stackup layer count increases, so does the number of possible combinations of the structure. But, if one sticks to the basic rules, then the best performing configurations are obvious.

Figure 1 illustrates the spreading of return current density across the plane above and below the signal path. At high frequencies, the return current takes the path of least inductance. As the frequency approaches a couple of hundred MHz, the skin effect forces the return current to the surface (closest to the signal trace).

I previously mentioned that it is important to have a clearly defined current return path. But it is also important to know exactly where the return current will flow. This is particularly critical with asymmetric stripline configurations where one signal layer is sandwiched between two planes as in Figure 2. Now obviously, if the distance to the closest plane (h1) is the same distance as the far plane (h2) then the return current distribution will be equal on each plane (given the same inductance for each path). However, in order to force the current onto the ground (GND) plane of an unbalanced stripline configuration, h2 needs to be at least twice h1, and three times is better.

To read this entire column, which appeared in the August 2014 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

A Library Management Cautionary Tale

02/12/2021 | Steven V. Chavez, CID+
The library management of footprints, land patterns, or cells—however you refer to them in your ecosystem—is one of the most critical items in the foundation of any PCB or CCA design. When I was asked to write an article on this topic, so many thoughts and experiences instantly flooded my mind. After 30+ years of designing PCBs throughout the industry, I have my share of experiences and stories about footprints. One particular experience stands out.

Wild River ISI-56 Platform Accelerates SerDes Testing

02/02/2021 | Andy Shaughnessy, Design007 Magazine
I recently spoke with Al Neves, founder and CTO of Wild River Technology, about the release of their new ISI-56 loss modeling platform. Al explains why it was so critical that this tool meets the stringent requirements of the IEEE P370 specification (which he helped develop), and why he believes this is currently the best tool for SerDes testing and characterization.

Seven Tips for Your Next Stackup Design

02/01/2021 | Eric Bogatin, University of Colorado, Boulder
Rarely do we have the luxury of designing a board just for connectivity. When interconnects are not transparent, we must engineer them to reduce the noise they can generate. This is where design for signal integrity, power integrity and EMC—collectively high-speed digital engineering—are so important. Eric Bogatin offers seven tips for stackup design.



Copyright © 2021 I-Connect007. All rights reserved.